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How many holes can locally linearly independent
refinable function vectors have?

Gerlind Plonka

Institute of Mathematics, University of Duisburg, Germany
plonka@math uni-duisburg. de

Abstract

In this paper we consider the support properties of locally linearly independent refinable
function vectors 4 = 0..., k)T. We propose an algorithm for computing the global
support of the components of P. Further, for -5 = (¢1, 0 2 )T we investigate the supports,
especially the possibility of holes of refinable function vectors if local linear independence
is assumed. Finally, we give some necessary conditions for local linear independence in
terms of rank conditions for special matrices given by the refinement mask. But we are
not able to give a final answer to the question whether a locally linearly independent
function vector can have more than one hole.

1 Introduction

Let . = 0€1,-.., /r)T, r E IN, be a vector of compactly supported continuous functions
on IR. The function vector P is said to be refinable if it satisfies a vector refinement
equation

4(x) = A(k) 4(2x - k), x E IR, (1.1)
kEZZ

where {A(k)} is a finitely supported sequence of real (r x r)-matrices.

Refinable function vectors play a basic role in the theory of multiwavelets. In the last
years the properties of refinable function vectors have been investigated very extensively.
In fact, it is possible to characterize properties like approximation order and regularity
of 4 and L2-stability of the basis generated by b completely by means of the refinement
mask {A(k)} [1, 6, 7, 11].

We say that P is L2 -stable if there are constants 0 < A < B < oo such that for any
sequences cl,... , c 12(Z),

AZ c, (k)12  ~c,(k)q (.k) • BZ Ic,(k)12

v=1 kEZZ v=1 kCEZ Lv=1 AE7Z

In some applications one needs not only L2 -stability of the basis generated by D but other
stronger conditions of linear independence. We say that ' is globally linearly independent
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Locally linearly independent function vectors 379

if for any sequences C1, Cr on 2Z

E ~ ck)0(--)=0on JR
v=1 kEZ

implies that c (k) = 0 for all v, = 1,... r and all k E 7Z (see [8, 5]).

The following definition is even more restrictive: A function vector '1 is called to be
linearly independent on a nonempty open subset G of IR if for any sequences cl,... ,r

on 71

Z c,(k)0v(--k)=O on G
V=1 kE2Z

implies that cv(k) = 0 for all k E I,(G), v = 1, ... , r, where I(G) contains all k E 7Z
with 0,(. - k) 0 0 on G. Finally, P is called to be locally linearly independent if it is
linearly independent on any nonempty open subset G of JR.

Obviously, local linear independence of 4) implies global linear independence and
global linear independence of D implies L2-stability. It has been shown by Sun [12], that
for compactly supported, refinable functions (r = 1) with dilation factor 2 the notions
of local and global linear independence are equivalent. However, this is not longer true
for function vectors [4].

For (scalar) refinable functions q, local linear independence implies that 0 has integer
support, i.e., supp 0 starts and ends with an integer, and supp 0 does not contain holes,
i.e., supp 0 is an interval.

Now, one can ask, 'is this also true for locally linearly independent refinable function
vectors?' Unfortunately this is not the case. In [10] it has been shown that a component
of 4 can have a hole. However, it is not clear, whether a refinable, locally linearly inde-
pendent function vector can also have components with finitely many or even infinitely
many holes.

In this paper, we want to investigate support properties of locally linearly independent
function vectors and consider the 'hole problem' more closely. In the second section we
briefly recall a characterization of local linear independence for function vectors in terms
of the mask {A(k)}. In Section 3, we present an algorithm for computing the starting
points and endpoints of the support of the components 0, of b.

In the remaining part of the paper we restrict ourselves to the special case P =

(01, 02)T. We collect some observations on function vectors with holes in Section 4 and

show that holes can only occur in special situations. In Section 5 we give necessary
conditions for local linear independence in terms of rank conditions for matrices formed
by the mask {A(k)}. In Section 6 we prove that the function vector 4 given in Example
4.1 is continuous and locally linearly independent. Finally, we summarize our findings in
the conclusion. However, the question put in the title of this paper cannot be answered
completely. We conjecture that it is not possible to have locally linearly independent
function vectors with more than one hole.
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2 Preliminaries
Let us start with some notations. For a compactly supported, continuous function q5
IR --* IR let supp 0 be the closed subset of IR, where 0 does not vanish. Further, let the
global support gsupp q be the smallest interval containing supp 0. The function 0 is said
to have a hole if there is an interval I which is a subset of gsupp 0 of Lebesgue measure
greater than zero, where 0 is identically zero. The function vector I) is said to contain a
hole if one of its components has a hole.

For a characterization of locally linearly independent function vectors we briefly recall
the result of Goodman, Jia and Zhou [4]. Let (D satisfy the refinement equation (1.1),
where the mask matrices A(k) are zero matrices for k < 0 and for k > N. Considering
the vector

4,(x) = ((x + k))-

of length rN and the (rN x rN)-block matrices
A- = (A(2k - l))N-=, A1 = (A(2k - I + 1))N- 0 , (2.1)

the refinement equation can equivalently be written as

-I(x/2) = Ao0 (x) and 4I((x + 1)/2)= A 1  (x), x E [0, 1].

For el,... ,n, E {0, 11 it follows that

• • 1+...+-+'+ -x =Al'"A•,,'(x), x E [0, 1].

Now let v0 be a right eigenvector of A0 to the eigenvalue 1. This eigenvector is unique
(up to multiplication with a constant) if D is L2 -stable (see [3]). Let V be the minimal
common invariant subspace of {AO, A1) generated by vo. Then V contains the vectors
-P(x), x c [0, 1), since 4(0) = cvo with some constant c and each x C [0, 1) can be
represented as a limit of a sequence of dyadic numbers 1/2n, I e 2Z, n = 1, 2,.... Further,
let M be an (rN x dim V)-matrix such that the columns of M form a basis of V. Then
we have from [4]

Theorem 2.1 Let 4 be a refinable vector of compactly supported, continuous functions
satisfying (1.1) with A(k) = 0 for k < 0 and k > N. Then we have

(1) 4 is linearly independent on (0, 1) if and only if all nonzero rows of M are linearly
independent.

(2) 4 is locally linearly independent if and only if for all n with 0 < n < 2 rN and all
e1,. -- ,6n {0, 1} the nonzero rows of A, . .. A, 1 M are linearly independent.

Remark 2.2 A similar characterization of local linear independence is possible also for
L1 -solutions of vector refinement equations (1.1) and even for distributions (see [2, 13]).
Some examples of locally linearly independent function vectors can be found in [4, 10].

3 Global support of D
Now we want to give an algorithm for computing the global support of the components
of refinable function vectors 4 from the mask. To this end let us assume that the (r x r)-
matrices A(k) in (1.1) are of the form A(k) = (Aij(k))ý,j=1 . We look for a&, 0, C IR



Locally linearly independent function vectors 381

with gsupp¢ = [a,, 3l]. Let for all pairs (i,j), i,j = 1,... r,

si,j min{k Aj(k) 0 o},
gij max{k Aij(k) 0 0}.

Observe that si,, gi,j are integers. The numbers a, can be found by the following al-
gorithm.

Algorithm 3.1
Input: sij, i,j = 1,... ,r.

(1) Let p := (pl,.. ,Pr) be a vector of length r.
For v from 1 to r do a := sv',V; Pv := v enddo.

(2) For v from 1 to r do
For j from 1 to r do

if sv,j < 2a, - aj then a, := (s,,j + aj)/2; p:, j endif
enddo

enddo.
(3) Repeat step (2) as long as the vector p - (pl,. . . ,p,r) changes.

(4) Form the (r x r)-coefiicient matrix P with

f 1 if i=j and i=p(i),
2 if i=j and ihp(i),

Pi'j -1 if i Aj and j=p(i),
0 elsewhere,

and the vectors a := (o1,. ...,ar)T, s := (S1,'p,.... ,s,p )T and solve the linear
equation system Pa = s.

Output: a = .... , a)T.

Analogously we obtain the algorithm for the endpoints 0,:

Algorithm 3.2
Input: gi,j, i,j = 1,... ,r.

(1) Let p := (pl,... ,p,) be a vector of length r.
For v from 1 to r do 03. := g9,v; p, := v enddo.

(2) For v from l to r do
For j from 1 to r do

if gv,j > 20, - 3j then /3v (g,,j + 13j)/ 2 ; pv j endif
enddo

enddo.
(3) Repeat step (2) as long as the vector p = (pl,... ,pr) changes.
(4) Form the (r x r)-coefficient matrix P as defined in Algorithm 3.1, and the vectors

b := (31i,...,.3r)T, g :(gl,pi,...,g ,p )T and solve the linear equation system
Pb = g.

Output: b:= (/31,..0,/3 )T.
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Proof: The refinement equation (1.1) implies for each component ¢, that
r(x :A,,j (k) Oj(2x - k).

kE2Z j=1

In particular, it follows from the local linear independence, that for all k with A,,j,(k) 7 0,

gsupp~j(2. -k) 9 gsuppo,, v, j = 1,... ,r,

that is [(cej + k)/2, (O3j + k)/2] _ [a,, 3,1. Using the numbers sij and gij defined above,
we obtain (aj + s,,j,)/ 2 > o,, and (O3j + gv,j,)/2 < 0,, or equivalently,

2a, - aj < s,,j and 203, - Oj Ž gv,j (3.1)

for all v, j = 1,... ,r. In particular, for each fixed v at least one of the r inequalities in
(3.1) for the starting points (and for the endpoints, respectively) must be an equality.

Let us look to the first algorithm computing the starting points, the second works
analogously. In the first step of the algorithm we just put a, := sw,,. These s,,, are upper
bounds of the true starting points of 0, since, for j = v, (3.1) implies a,, < Sv,,. Hence
it is clear that, if 2a, - aj is greater than s,,j for a fixed v and some j E {1, ... ,

then a, must be reduced since aj is already an upper bound for the starting point
of OJ. Putting now c, := (s,,j + aj)/2 in step 2, we obtain again an upper bound of
a,. Repeating the second step of the algorithm we obtain decreasing sequences for a,
(being dyadic rationals, and) approaching the exact starting values. However, if the exact
starting values are not dyadic rationals then they cannot be obtained by a finite number
of repetitions of step 2. That's why we consider the vector p which stores for each v an
index j = p, for which the inequality in (3.1) is even an equality. Then step 2 must only
be repeated a few times in order to find the correct vector p. Now, we can use the r
equalities

2a0, - Op, == 8v,

in order to compute a,, directly. By a suitable rearranging of the equations one obtains
an (r x r)-coefficient matrix

P 1  0 0 ... 0
0 P2 0

P :2 0 (3.2)

0 ... P, 0
R D

where P1, 1 = 1, ... , K, are circulant matrices of the form

2 -1 ... 0
0 2 -1

-1 0 ... 2
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D is a diagonal matrix with diagonal elements 1 or 2, and R is a matrix of dimension
dim D x (r - dim D), with one nonvanishing entry in each row at most. For example, in
the case p = (1,2,... ,r), P is just the (r x r)-identity matrix, i.e., dimD = r and the
matrices P, and R do not occur in P. For p = (2,3,... r,1) we find P = P1 and D as
well as R vanish. If p contains smaller 'cycles' of the form (Pt .,.... p, ,) with pnj = ni+1,
j = 1, . . . , M - 1 and pn, = n1, then each cycle corresponds to a circulant matrix PI in P.
Since the circulant matrices P, are invertible, the equation system is uniquely solvable.
M

Example 3.3 Let r = 4 and let the values sij, ij = 1,2,3,4 be given by the matrix

s 4 1 1 2 3
( i8i,Xj=l 1 111 "

3 0 1 1

Algorithm 3.1 gives
step 1: aT = (a,, a2, a3, C14) = (1, 1, 1, 1) and p ='(1, 2, 3, 4)
step 2: aT - (a,, a2, 03, a4) = (1/2, 3/4,3/4,3/8) and p = (4,1,1,2)
step 3: one repetition of step 2:

aT = (a1,C2, C3, a4) = (3/16,19/32,19/32,19/64) and p = (4,1,1,2)
Since p did not change no further repetition of step 2 is necessary.
step 4: We obtain

2 0 0 -1
p= -1 2 0 0

"-1 0 2 0
0 -1 0 2

which can be simply changed into a matrix of the form (3.2) by rearranging the equations
for the vector a' = ( 0a 1 , 0 64 , 0a 2 , 0a 3 )T. The system Pa = s with s = (0,1,1,O)T gives
a = (1/7,4/7,4/7,2/7)T.
Remark 3.4 In [10] it has been shown that for locally linearly independent refinable
function vectors 4 = (1, ... , )T the starting points and the endpoints of gsuppo,
V = 1,..., r, are rational numbers of the form k + Cr, where k E 2Z and c, E Jr with

J, := k2 l) .~ 1 ,. ,r k-- 0,..., (2' - 1)2r- - 1 I
Jr (21 -1)2r-I *:

4 Function vectors with holes

In contrast with the scalar case, where a locally linearly independent refinable function
cannot have a hole, for function vectors this need no longer to be true.

Example 4.1 Let ( = (01, 0 2 )T satisfy

- /9 2/9) x (1/3 1/34)(2x (1)+ 2/3 0N (2x_2)
•(x) = 1/3 1/3/)(2x)+ 1 0 -1 1/3 0)

+(l 4
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FIm. 1. Locally linearly independent function vector 4 = (1,¢ 2 )T with a
hole.

Hence A0 and A1 in (2.1) are (14 x 14)-matrices. The function vector (P is uniquely
determined by the refinement equation (up to multiplication by a constant). Further,
gsupp 01 = [0, 3] and gsupp 02 = [0, 51, and 02 possesses a hole of length 1, namely
0 2 (x) = 0 for x E (5/2, 7/2) (cf. Figure 1). As we shall show in Section 6, -) is continuous
and locally linearly independent.

Further, one can simply find function vectors P) with infinitely many holes (but not
being locally linearly independent).

Example 4.2 Let 4) = (0 1 , 0 2 )T with
01 (W)= •l( l(x+1(2x-1)+ 0(2x-2), 12(X)=22(2x)+l(2x-4).

FIG. 2. Function vector (P = (1, 0 2 )T with infinitely many holes.

Here A0, A1 in (2.1) are (8 x 8)-matrices. Observe that 01 is just the hat function
with suppol = [0,2] and 02 is a fractal function with gsupp02 = [0, 3], formed by
infinitely many 'hats' of support length 2-i, j = 0,1,..., and with infinitely many holes
of the form 2 -i( 3 / 2 , 2), j = 0, 1,... (cf. Figure 2). Of course, this function vector is not
locally linearly independent, since 01 is refinable by itself (see also the proof of Theorem
4.3).

We want to consider the support properties of function vectors 4) more closely, and
investigate, in which cases the components of 4) can have holes.
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In the remaining part of the paper, we only investigate the case r = 2, i.e., D =

Theorem 4.3 Let 4 = (01, 0 2 )T be a refinable, locally linearly independent vector of
compactly supported, continuous functions with gsupp 0, = [a,, 3,] and let l, a3• -a,
v = 1, 2, be the lengths of the global supports with ll <_ 12. Suppose that 4 contains holes.
Then we have

(1) The support lengths satisfy 12/2 < l < 12.

(2) There exist compactly supported, continuous functions fl, f2 such that 02 = fl + f2

and the vector (¢1, fl, f 2 )T is refinable.
Proof. Since 4 contains holes, there exists an open interval I = ('71, -y2) of greatest
length and a v E {1, 2} with I C gsupp 0, where 0, vanishes on I. If there are several
intervals of greatest length (biggest holes) we just choose one of them. Refinability implies
for x E I

0,(x) = 0 = EAj,(k) 01(2x - k) + A,, 2 (k) 0 2 (2x- k).
k

Since 4 is locally linearly independent, it follows that

A,,,(k) = 0 for suppol(2.-k)fnI#0,

A,, 2 (k) = 0 for supp02(2.-k)fnI#0.

The choice of I as the greatest interval now implies that we can replace supp ¢, by
gsupp 0v, such that

A,,.(k) =0 for 2 y, -13 <k <2y2-al, (4.1)
A,, 2 (k) = 0 for 2 'y1 -, 3 2 < k < 272 - a2 .

Let now fi := 0, X[cyi] and f2 := O-X[-Y2 ,;,], where X[a,b] denotes the characteristic
function of the interval [a, b]. Then k, = fi + f2 and from refinability and from (4.1) it
follows that

f2(x) = • A,,,(k)l1(2x- k) + S A, 2 (k)¢02(2x k),
k<2"yl -- i k<2" -y-/32

f2(x) = AA,, (k) 01(2x - k) + E A,,2(k) 02(2x -k).

k>27'2-- i k>k 27y2 -- a2

If the hole I were in 0i, then at least one of the two functions fl, f2 would have a
global support length less than 11/2 and hence would vanish since gsupp oi (2. -k) and
gsuppo 1 (2 -k) have a length > 11/2. Thus the hole must be in 02, i.e., 02 = fl + f2.

For 11 = 12 we obtain a contradiction, since, with the same argument as before, one
of the two functions fl, f2 vanishes. Hence 12 > 11 . In this case (01, fl, f2)T is obviously
a refinable vector of continuous functions.

It remains to show that 12/2 > l1 leads to a contradiction. For 12/2 > 11, q1 must be
refinable by itself, since gsupp 02 (2.-k) cannot be contained in gsupp 01 for some k E 7Z.
In particular, from local linear independence we know that then [al,13l] is an integer
interval and that q1 has no holes. Further, since at least one of the two functions fl, f2
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has a global support length less than 12/2, it follows that this function is representable
by 01(2. -k), k E 2Z, only. Without loss of generality let

fi(x)= E A2,1 (k) ¢1(2x - k), x E R. (4.2)
k<2-yl -- 01

Considering 4) = (0i(" + k)'I)L, local linear independence implies that the space
V, = span {f 1 (x) :x [0, 1)} has full dimension 11. Further, we consider

(4T ( T,,11_21-1) ., T T.
= ( f, (- +~ k))'-' 1) , ((0s2 ( +k)

(Here, for x E IR, [xJ denotes the greatest integer less than or equal to x and Fx1
denotes the smallest integer greater that or equal to x.) Now, choosing a matrix M of
basis vectors of the space V = span {14(x) : x E [0, 1)}, then, because of (4.2), the rows
of M corresponding to f, depend on the first l rows (corresponding to 01). However,
not all fi-rows can be zero rows since fi is not a zero function. But this contradicts the
local linear independence condition by Theorem 2.1. 0
Corollary 4.4 Let 4) = (01, 02)T be a refinable, locally linearly independent vector of
compactly supported, continuous functions with gsupp 0, = [a,, 0l] and 1, = 0, - a,,
v = 1,2. Suppose that 11 :_ 12. Then we have: If 11 = 12 or l1 < 12/2 then 01, 02 do not
possess holes.
Lemma 4.5 Let (D = (01,¢ 2 )T be a refinable, locally linearly independent vector of
compactly supported, continuous functions. Then 4 has no holes that start or end with
an integer.
Proof. Suppose, 4) has a hole which ends with an integer. Choose a hole ('y', 'y2) of this
type with biggest length. Without loss of generality assume that this hole is in 02. Then,
at least in a small right neighborhood of 0, 02(' + 72) is representable only by 01 (2. ± +a)
and 02(2 +a 2 ). Recall from [10] that the supports gsuppol = [a,, /l3], gsupp 2 =
[Ce2 , /21 satisfy

a,= k+ C2, 0,=l1+ C2, k, I c2Z,C2 E{10, 1/2, 1/3, 2/31.

Now, if both, a, and a 2 are integers, then 1(x+a 1 ), 0 2 (x+ca 2 ), 0 2(x+-y2 ) are linearly
dependent in some suitable interval x E [0, e), E > 0, since they can be represented by
the two functions 01(2x + a,), 02(2x + a2). This is a contradiction to the local linear
independence. If only one a,, v E {1, 2} is an integer, then 0,(x + a,) and 0 2 (x + "2)
are representable only by 0, (2x + a,) in some interval x E [0, e) as before and we again
obtain a contradiction. If neither a, nor a 2 are integers, then 02 (x + 72) cannot be
represented by integer translates of ¢,(2x), v = 1, 2, contradicting the refinability.

Analogously, the contradiction follows for holes starting with an integer. C

Let us call a hole (71, -y2) in 4) biggest hole if there is no other hole in - of double
size of the form (2 7, + k, 2 -f2 + k) with some k E 2Z.
Lemma 4.6 Let 4) = (01,¢ 2 )T be a refinable, locally linearly independent vector of
compactly supported, continuous functions. Then there is at most one biggest hole in 4.
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Proof: Assume that 4D has two biggest holes. Let again 11, 12 denote the lengths of the
global supports of 01, 02 and suppose that 11 < 12. Then 01 cannot have a biggest hole by
Theorem 4.3. Hence the two holes must be in 02 and we get a partition q2 = fl + f2 + f3
analogously as in the proof of Theorem 4.3 such that (gsupp fl) U (gsupp f 2 ) U (gsupp f3) C
gsupp 2. Further, by refinability, each function fl, f2, f3 can be represented by 01 (2.
-k), 02 (2 • -k), k E 2Z. Moreover, at least one of the three functions fl, f2, f3 must
contain a translate of 02(2.), otherwise at least two of the functions fl, f2, f3 would be
linearly dependent in a suitable interval inside the starting intervals, since 01(2. -k)
either starts at 2Z + a,/2 or at 2Z + (a, + 1)/2 (depending on whether k is even or odd).
Hence gsupp 02 > (gsupp 02)/2 + 2(gsupp ¢1)/2. But this contradicts Corollary 4.4.
F

Remark 4.7 All results in this section can be generalized to r > 2 and to Ll-integrable
functions, if the characterization of local linear independence in [2] is used.

5 Rank conditions for matrices formed by the refinement mask
We again restrict ourselves to the case that -b = (01,0 2 )T is a vector of compactly
supported, continuous functions satisfying the refinement equation (1.1) with A(k) = 0
for k < 0 and k > N.

Let us consider the matrices A 0 and A, in (2.1) and the minimal common invariant
subspace V of {Ao, A1 } generated by vo as defined in Section 2. Recall that V contains

ý(x), x e [0, 1). Let M be an (rN x dim V)-matrix such that the columns of M form a
basis of V. Now delete all components in the vector 4) = (D(x + k))N-10' corresponding to
zero rows in M in order to get ;D. Further, delete the corresponding rows and columns
in the matrices A0 and A 1 in (2.1) in order to obtain A0 and A1 with

P(x/2) = AoP(x), k((x + 1)/2) = Ai4(x), x E [0, 1]. (5.1)

Deleting the zero rows and the corresponding columns in M we obtain M..

Example 5.1 Let us consider Example 4.1. Here 4P is a vector of length 14 and V =
span f{(x + k)k=o : x E [0, 1)}. Since suppol = [0, 3] and supp0 2 C [0, 5], it follows
that the rows of M corresponding to 01 (x + j), j = 3, 4, 5, 6, and 02 (x + j), j = 5, 6 are
zero rows. Indeed, these are all zero rows of M, i.e., V has dimension 8. We delete these
components of 4,(x) and obtain
"D = (01(x), ¢2(x),¢1(x + 1),02(+ 1), ~+ 2), ¢2(x +2), (+ 3),02 4 + T

as well as
1 2 0 0 0 0 00 03 3 1 2 0 0 0 0
3 3 0 0 0 0 0 0 9 0 3 3 0 0 0 0
6 0 3 3 1 2 0 0 0 0 6 0 3 3 2 0

9A0 3 0 9 0 3 3 00 9 00 3 0 9 0 3 0

0  0 0 0 6 0 3 2 0 0 0 0 0 0 0 3
0 0 0 0 3 0 0 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0

\0 0 9 0 0 0 0 0/0 0 0 0 9 0 0 0
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Let us call a row of Ao (resp. A 1) 01-row if it corresponds to an 01-entry in 4 and

q2-row if it correspond to an q2-entry.
Let n be the length of the new vector i and hence A0, A1 are (n x n)-matrices. If (D

is a locally linearly independent vector then Theorem 2.1 implies that M is an invertible
(n x n)-matrix.

Deleting the first q 1-row and the first 02-row and the corresponding columns in A 0 ,
we obtain a new matrix B of dimension (n- 2) x (n- 2). The same matrix B is obtained, if

we delete the last ¢1-row and the last 02-row and corresponding columns in A 1 . Further,
the structure of A0, A, implies that

spec A0 = spec Jo U spec B, spec A1 = spec J, U spec B,

where J0 (resp. Jj) is a 2 x 2-matrix containing the entries of Ao (resp. A1 ) being at
the same time in the first 01- or q2-row (resp. last 01- or ¢2-row) and in the first 01- or

02-column (resp. last 01- or 02-column). (Here spec A denotes the set of eigenvalues of
a matrix A.)

Example 5.2 For 4) = (01, 02)T in Example 5.1 we obtain the matrix B after deleting

the first and second row and corresponding columns in Ao or by deleting the 5th and
8th row and corresponding columns in A1 . Hence,

3 331 20 0
9 0 3 3 0 0

1  00 6 0 3 2 1 (1 2 1(0 3
9 00 3 0 0 3 9 3 3 9 9 0

00 0 0 0 0

90 0 0 0 0/

where J1 and J 2 are invertible.

We obtain

Theorem 5.3 Let 4 = ('1, q 2 )T be a refinable, locally linearly independent vector of

compactly supported, continuous functions. Further, let Ao, A1 and B be given as above.
Then we have

(1) rank(Jo) _> 1 and rank(Ji) > 1,
(2) rank(B) > n - 3,

(3) rank(Ao) _> n - 2 and rank(Ai) > n - 2,

(4) Irank(Ao) - rank(A1)l < 1.

Proof: (1) First observe that Jo and J1 at least have rank 1, otherwise a component
of -i(x), x E [0, 1) would completely vanish, contradicting the definition of •.

Let gsupp ¢ 1 = [a1 , 3•1] and gsupp ¢2 = [a 2 , /32]. Then, one simple eigenvalue zero in
JO implies that a, E 2Z, a 2 E 2Z + 1/2 or vice versa. If Jo has two eigenvalues 0 then
the geometric multiplicity of 0 must be 1 and we obtain a1 E 2Z + 1/3, a 2 G 2Z + 2/3 or
vice versa. Analogously, a corresponding behavior of J1 implies /31 E 2Z + 1/2, /32 E 2Z
or vice versa, and f1l E 2Z + 2/3, /32 E 2Z + 1/3 or vice versa, respectively.
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(2) If the matrix B possesses the eigenvalue zero, then both, .A0 and A1 possess the
eigenvalue zero. Hence, A0 M and AjM are not invertible, while MA4 is an invertible
matrix. Thus, by Theorem 2.1, Ao and A 1 have a zero row, but being not the first or
last 01- or 02-row. Hence, also B has a zero row and, by construction, if Ao has the
zero row in the l-th Oi-row, i E {1, 2}, then j, must have a zero row in the (1 - 1)-
th Oi-row. This means by (5.1), the two zero rows imply a hole in 4) containing the
interval (k - 1/2, k + 1/2), for some k E 2Z. This hole must be a biggest hole. If B
has the eigenvalue zero with geometric multiplicity greater than 1, then with the same
arguments one obtains a second biggest hole in 4D. But this contradicts the local linear
independence by Lemma 4.6. Hence rank(B) Ž_ n - 3.

(3) The above considerations directly imply that rank(AO) > n - 2 and rank(Al)
n-2.

(4) Now, if A 0 has rank n - 2, then B has rank n - 3 and hence A1 can have rank
n - 1 at most. Analogously, rank(Al) = n - 2 implies rank(Ao) _5 n - 1. 0

From Theorem 5.3 it follows that we have to investigate the following five cases:

(1) rank(Ao) = rank(Al) =n,

(2) rank(Ao) = rank(Al) = n - 1,
(3) rank(Aýo) = rank(Al)= n - 2,

(4) rank(Ao) = n - 1, rank(Al) = n,

(5) rank(Ao) n- 1, rank(A)= n - 2.

All further cases can be reduced to one of the above. However, some of these cases may
contradict the local linear independence assumption for 4b.

Considering the first two cases, we obtain a partial answer to the question of whether
the support of Oi, i = 1, 2, can have holes. Moreover, we obtain sufficient conditions for
the local linear independence of D in terms of rank conditions for A0 , A 1.

For the first case we obtain:

Theorem 5.4 Let 4) = (€1, 0 2 )T be a refinable vector of compactly supported, continu-
ous functions. Let the space V = spanf{e(x) : x E [0, 1)} have full dimension, i.e. M,
formed by basis vectors of V is an invertible (n x n)-matrix. Let A0 , A 1 be given as
above. Then rank(Ao) = rank(Ai) = n implies that D is locally linearly independent and
has no holes.

Proof: The assertion on local linear independence is already proved in [4], Theorem
3.2. Since A40 , A1 are invertible, the matrix Al ... ""-jM never has a zero row, hence
from E

+ +'"÷ + x)4.. xE[0,1), (5.2)

it follows that there is no dyadic interval where 01 or 02 vanishes. Thus 4) has no holes.
[1

For the second case we find

Theorem 5.5 Let 4 = (01, 02)T be a refinable vector of compactly supported, continu-
ous functions. Let the space V span {(x) : x E [0, 1)} have full dimension, i.e. M,
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formed by basis vectors of V is an invertible (n x n)-matrix. Let A0 , A 1 and B be given

as above. Further, let rank(Ao) = rank(.A1) = n - 1 and each of these matrices has one
zero row. Then we have

(1) If rank(B) = n - 2 and the four matrices AoAo, AoA 1 , A 1Ao, A 1A1 have rank
n - 1, then (D is locally linearly independent and has no holes.

(2) If rank(B) = n-3 and the four matrices AoAo, AoA 1, 4A1A 0 , A1,A have rank n-1,
then b is locally linearly independent and has one hole of the form (k-1/2, k+ 1/2)
for some k E 2Z.

Proof: (1) We consider the first case. Since rank(B) = n - 2, it follows that B is

invertible and the zero row of Ao must be the first 01 -row or the first p2-row. Analogously,
the zero row of A1 must be the last 01- or 02-row. Since rank(AoAo) = rank(AiAi) =
n - 1, it follows that J0 and J1 only have a simple eigenvalue zero and the assumptions
(1) of the theorem imply that all matrix products A1, ... ,M, n E IN, have rank

n - 1 and one zero row, namely the same as .A if f1 = 0 and the same as A1 if c1 = 1.
The assumption on V in the theorem already ensures that I) is linearly independent on
(0, 1). Now the above observations also imply that, by Theorem 2.1, 4) is locally linearly
independent.

The zero row in A0 implies that the support of one component of f) starts with an
integer and the support of the other with a half integer. Considering the zero row in Al
we also find that the support of one component ends with an integer and the support of
the other with a half integer. In particular, from (5.2) it follows that 4D cannot have holes.
(2) We consider the second case. Since rank(B) = n - 3, it follows that B possesses the
eigenvalue zero and the zero rows of 4o and A,1 are not the first or the last 01- or 02-

rows. Moreover, as shown in the proof of Theorem 5.3, if the l-th €i-row, i E {1, 2}, of

A 0 is a zero row then the (1 - 1)-th Oi-row of A 1 is also a zero row, and this implies
by (5.1) a hole of the form (k - 1/2, k + 1/2) for some k E 2Z in 0j. Further, the rank
conditions (2) of the theorem imply that all matrix products Aj, .... , n E IN, have
rIank n - 1 and either a zero row in the l-th or in the (1 - 1)-th row. Thus, by Theorem
2.1, 4) is locally linearly independent and has only one hole. 0

Remark 5.6 Example 4.1 satisfies the assumptions of Theorem 5.5 (2). An example
satisfying Theorem 5.5 (1) can be found in [10].

Observe that the case (2) is not completely settled by Theorem 5.5 since for rank(Ao) =

rank(Ai) = n - 1 some of the four matrices AoAo, AoA 1 , A 1 Ao, A 1A1 can also have
rank n - 2. Indeed, there exist locally linearly independent function vectors, where
rank(Ao) = rank(A1 ) = n - 1 and rank(AoAo) = rank(A 1A1) = n - 2, see [10]. The
remaining cases are more complicated to handle and we cannot give a final answer to
the question of whether a locally linearly independent refinable vector 4) can have more
than one hole.

6 Proof of the example

In this section we want to verify the assertion that the function vector 4) given by the
refinement mask in Example 4.1 is continuous and locally linearly independent. Let us
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first prove that 4 is continuous. To this end we use the following observation by Jia,
Riemenschneider and Zhou [9]:

Let {A(k)}= 0 be a real refinement mask satisfying the following properties:
NA

(1) 2 k=o A(k) has one eigenvalue 1 and all further eigenvalues are inside the unit
circle.

(2) The matrices A0 and A1 both have the simple eigenvalue 1 and there is a vector
el E IRNr with eT A0 = eT A, = eT.

(3) Considering the space U = {u E IRTN: efu = 0} the joint spectral radius of AoI u
and AlIu satisfies p(AoI uAoIu) < 1.

Then the subdivision scheme associated with {A(k)}IN 0 converges in the maximum
norm, and hence the solution vector 4 of the refinement equation is continuous.
Here the joint spectral radius satisfies for any matrix norm

p(Ao0u Ao0u) = inf (max{l1A ,lu... A Jlull : E 0, if, i n)

For our example we find:
1) ~ 5/9 5/18\

/E k) 4/3 1/6= possesses the eigenvalues 1 and -5/18.2k=O (/

2) The matrices A0 and A1 both have the simple eigenvalue 1 with the left eigenvector
T = (3,1,3,1,3,1, 3,1,3,1, 3,13).

3) The space U = {u E IR14 : eT u = 0} has dimension 13 and we find the orthonormal
basis of U:

ul = 28-1/2 (4,0,0,0, -3, -1,0,0,0, -1,0,0,0, _1)T,

U2 = 110-1/2 (0, 0, 0, 0, -3, -1, 0,0,0,0,0,0.0,10)T,

U3 = 130-1/2 (-3,0,0,0, -3,-1, -3, 0, 0, -1, 0, 0, 10, -I)T,

U4 = 132-1/2 (0,0,0,0, -3,-1, 0,0,0,11,0,0,0, -1)T,

U5 = 70-1/2 (-3,0,0,0, -3,-i1,7,0,0,-i1,0,0,0,_-I)T,

U6 = 208-1/2 (-3,0,0,0, -3,-1, -3,0,0,-1, 13,0, -3, _1)T,

U7 = 3540-1/2 (-3,-i,-3,0, -3,-1,-3,59,0,-1, -3, -1, -3, _1)T,

Us = 3660-1/2 (-3, -1, -3,60,-3, -1, -3, -1,0, -1, -3, -1, -3, -1)T,

u9 = 2352-1/2 (-3,48,0,0,-3, -1, -3,0,0, -1, -3,0,-3, -I)T,
ul0 = 3422-1/2 (-3,-1, -3,0, -3,-1, -3,0,0,-1, -3,58, -3, -1)T,

uli = 4270-1/2 (-9, -3, -9, -3, -9, -3, -9, -3,61, -3, -9, -3, -9, - 3 )T,

U12 = 10-1/2 (0,0,0,0,1, -3,0,0,0,0,0,0,0,0)T,

U13 = 2842-1/2 (-9, -3,49,0, -9, -3, -9,0,0, -3, -9,0, -9, - 3 )T.

The matrix representations ofA0[u, AiIu under this basis are Aolu = ((Ao uj)T 13Uk ) ,k=l

and A, [u =((A 1 Uj)T Uk) ýk_ 1 , and a computation with Maple gives for the spectral
norm

(max{I1A•1 vu A, lvu A• 3 IlUI2 :l, E2 , 63 E {0, 111)1/3 < 0.95.
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Hence 4) is continuous.
Let us prove the local linear independence of 4D. Here we use Theorem 2.1 and a

procedure proposed by Goodman, Jia and Zhou [4]. The space V C R1114 (as given in
Section 2) is spanned by the vector vo = (0,0,9/5,38/15,6/5,1,0,0,0,9/5,0,0,0,0)T
and by Alvo, AoAlvo, A 1Aivo, AoAoAlvo, AiAoAlvo, AoAoAoAivo, AiAoAoAlvo.
Here v0 is a right eigenvector of A0 to the eigenvalue 1. Hence dim V = 8. Forming the
matrix M, we observe that the 7-th, the 9-th and the last four rows of M4 are zero rows.
Hence gsupp 01 = [0, 3] and gsupp 92 = [0, 5]. The remaining 8 rows of M are linearly
independent. Thus D) is linearly independent on (0, 1) by Theorem 2.1.

We can restrict our considerations to the shortened matrices A4, A1 as given in
Example 5.1. Further, we can choose the matrix M4 as the identity matrix. The procedure
proposed in [4] gives rank Ao = rank AoJA0 = rank AOA 1 = 7 and the 7-th rows are zero;
rank A1 = rankA 1A1 = rankA 1Ao = 7 and the 6-th rows are zero.

Hence, 4) is locally linearly independent. Moreover, 92 possesses a hole of length 1,
namely 02(x) = 0 for x e (5/2, 7/2).

7 Conclusions
In Section 3 we have presented an algorithm to compute the global supports of the r
components of a compactly supported refinable function vector I) from the refinement
mask. The rest of the paper was restricted to r = 2.

While for the scalar case local linear independence of a refinable function 9 guarantees
that the support of 9 is an integer interval without holes, this is not longer the case for
r > 1. As we have seen in Section 4, a function vector - = (91, 0 2 )T can only have holes
if the lengths 11 and 12 of the global supports of 91, 02 satisfy 12/2 < 11 < 12. As another
property, it has been shown that the endpoints of a hole cannot be integers. Further, 4)
can have at most one biggest hole.

In Section 5 we have investigated matrices derived from the refinement mask. In
Theorem 5.3 some results on the rank of these matrices are obtained leaving five different
cases to be investigated. The first case has been solved completely in Theorem 5.4. The
second case has been settled partially in Theorem 5.5. For the other cases we cannot give
a final answer. However, if A0 and A1 have different rank (as in case (4) and case (5))
then one can show by Theorem 2.1 that 4) must have infinitely many holes. In case (4)
this can be seen as follows. Since rank(Ao) = n- 1 it follows that rank(A0Ao) = n- 1 for
k = 0, 1. Hence, by Theorem 2.1, AkA 0 has a zero row for all k = 0, 1,... implying
that 4D contains vanishing intervals of the form (lk + (2 ' - 1)/ 2 k, lk + (2k - 1/ 2 )/ 2 k) with
suitable integers lk. Here lk cannot be the same integer for all k = 0, 1, 2,..., in particular
one finds lk 0 Ik+1, k E IN. Hence 4I) has infinitely many holes. This observation leads to
the following

Conjecture 7.1 Let 4) = (01,0 2 )T be a refinable, locally linearly independent vector
of compactly supported, continuous functions. Then 4) cannot have more than one but
finitely many holes.
Our numerical computations however lead to the hypothesis that the cases (3), (4) and
(5) contradict the property of local linear independence. So we obtain
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Conjecture 7.2 Let 4- = (¢1, 02 )T be a refinable, locally linearly independent vector of
compactly supported, continuous functions. Then 4 cannot have infinitely many holes.
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